BIC Extensions for Order-constrained Model Selection
نویسندگان
چکیده
منابع مشابه
Xtended Bic Criterion for Model Selection
Model selection is commonly based on some variation of the BIC or minimum message length criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code length/model complexity) and one for the data given the model (message length/data likelihood). For problems such as change detection, unsupervised segmentation or data clustering it is common p...
متن کاملExtended Bic Criterion for Model Selection
Model selection is commonly based on some variation of the BIC or minimum message length criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code length/model complexity) and one for the data given the model (message length/data likelihood). For problems such as change detection, unsupervised segmentation or data clustering it is common p...
متن کاملModel Selection for Mixtures of Factor Analyzers via Hierarchical BIC
Bayesian information criterion (BIC) is a common model selection criterion for mixtures of factor analyzers (MFA). However, it is found that BIC penalizes each factor analyzer implausibly using the whole sample size. In this paper, we propose a new criterion for MFA called hierarchical BIC (H-BIC). Formally, the main difference from BIC is that H-BIC penalizes each factor analyzer using its own...
متن کاملModel Order Reduction for PDE Constrained Optimization
The optimization and control of systems governed by partial differential equations (PDEs) usually requires numerous evaluations of the forward problem or the optimality system. Despite the fact that many recent efforts, many of which are reported in this book, have been made to limit or reduce the number of evaluations to 5–10, this cannot be achieved in all situations and even if this is possi...
متن کاملConsistency of the Bic Order Estimator
We announce two results on the problem of estimating the order of a Markov chain from observation of a sample path. First is that the Bayesian Information Criterion (BIC) leads to an almost surely consistent estimator. Second is that the Bayesian minimum description length estimator, of which the BIC estimator is an approximation, fails to be consistent for the uniformly distributed i.i.d. proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sociological Methods & Research
سال: 2019
ISSN: 0049-1241,1552-8294
DOI: 10.1177/0049124119882459